An Introduction to the
GREATER PHOENIX METRO GREEN INFRASTRUCTURE HANDBOOK
LOW-IMPACT DEVELOPMENT DETAILS FOR ALTERNATIVE STORMWATER MANAGEMENT
JANUARY 2019

Prepared for City of Scottsdale in Collaboration with ASU Sustainable Cities Network and Member Communities

Photo credit: Marion Brenner, Scottsdale Museum of the West. Landscape architecture by Colwell Shelor.
TRAINING AGENDA

- What is low-impact development (LID)/ green infrastructure (GI)?
- Background
- Benefits of LID
- Purpose of Handbook
- Hydrologic design standards
- Content
- Additional resources
- Questions

Image courtesy of Leigh Padgitt
WHAT IS LOW IMPACT DEVELOPMENT?

- GI is an approach to water management that protects, restores, or mimics the natural water cycle. LID is a low-cost GI technique that manages stormwater where it falls.
- LID/GI is a landscape-based practice that can help maintain pre-development hydrological conditions.
- LID/GI allows water to:
 - Be cleansed and infiltrate into the soil.
 - Evapotranspirate (be transferred to the atmosphere through evaporation or transpiration by plants).
 - Be used for beneficial purposes, such as landscape irrigation.

Courtesy of Mass.gov Smart Growth, Smart Energy Toolkit
Arizona State University’s Sustainable Cities Network (SCN) has fostered discussion about sustainability and GI in Arizona since 2009.

LID is widely used in Pima County, but not in Maricopa County.

With SCN guidance, the Specs & Standards Subgroup of SCN’s GI Workgroup took up the challenge of creating a GI/LID handbook geared to the environment of the Phoenix Metropolitan Area. Core working team members include representatives of:

- City of Scottsdale
- City of Phoenix
- Flood Control District of Maricopa County (FCDMC)
- ASU Sustainable Cities Network (SCN)
- In addition, a total of eight cities or local agencies provided review, comments, and input (see the Handbook for a list of participants)

Funding came from Arizona Department of Environmental Quality (ADEQ) and Water Infrastructure Authority (WIFA) grants and the City of Scottsdale.

The Handbook contains 10 technical standardized details and specifications (TSDS) selected by the core team and a stakeholder group of eight Phoenix Metropolitan Area municipal representatives.
BENEFITS OF GI/LID

- Reduces water pollution by reducing nonpoint source pollutant loads.
- Helps conform with local first-flush requirements.
- Helps reduce stormwater peak flows and volume, helping mitigate flood hazards and improving water quality.
- Reduces the heat-island effect and quality of life by increasing vegetation and shade.
- Allows the use of stormwater as a supplemental source of irrigation water.
- Can help comply with MS4 and other general permit requirements, where the permit requires the use of sustainable stormwater practices.
- Sustainable practice that can help achieve goals for implementing green infrastructure.
PURPOSE OF THE HANDBOOK

- The Handbook encourages the use of LID techniques in the Phoenix Metropolitan Area by providing technical standardized details and specifications (TSDS) for 10 LID elements.
 - Elements were chosen with input from eight Phoenix Area municipal representatives.
 - Chosen elements were reviewed by a core team that included the Cities of Scottsdale and Phoenix; Flood Control District of Maricopa County (FCDMC); and Arizona State University (ASU) Sustainable Cities Network.
Rainfall patterns in the Desert Southwest are very different than elsewhere in the US.

- High-intensity, short-duration thunderstorms occur during the monsoon (July – September).
- Disintegrating tropical storms occur during the fall.
- Lower-intensity frontal storms occur during the winter months.
- Rainfall seasons are characterized by prolonged periods of dry conditions and low humidity.
- A large majority of rain events in Maricopa County are less than 0.5 inches.
HYDROLOGIC DESIGN CRITERIA USED IN THE HANDBOOK

- First-flush rainfall of 0.5 inches is the design criteria for this Handbook.
- Rainfall of 1.5 inches is used to determine the maximum storage capacity of LID facilities. Because these events cause floods, designing systems to accommodate these volumes can help mitigate flooding.
- Data is based on rainfall information collected by FCDMC across Maricopa County.
 - 90 – 95 percent of all storms are below 1.5 inches.
 - Rainfall events less than the first-flush rainfall occurred in 82 percent of storms.
- The design criteria for retention and detention basins requires that any storm event must drain within 36 hours.
LID ELEMENTS COVERED IN THE HANDBOOK

- Permeable pavements
- Curb openings
- Sediment traps
- Stormwater harvesting basins
- Vegetated or rock bioswales
- Bioretention systems
- Curb extensions
- Bioretention planters
- Domed overflow structure
- Landscaping

TABLE OF CONTENTS

PARTNERS .. ii
ACKNOWLEDGMENTS ii
ACRONYM LIST iii
TABLE OF CONTENTS iv

SECTION 1: INTRODUCTION 1

INTRODUCTION 1
HYDROLOGIC DESIGN ANALYSIS 3
OVERVIEW OF THE SELECTION 4
GENERAL NOTE 5

MARICOPA ASSOCIATION OF
GOVERNMENTS 6

SECTION 2: DETAILS & SPECIFICATIONS 7

1. PERMEABLE PAVEMENTS 7
 1.1 Applicability and Advantages 8
 1.2 Design Considerations 9
 1.3 Hydrologic Function 9
 1.4 Structural Design Requirements .. 10
 1.5 Underdrains 11
 1.6 Construction Considerations 11
 1.7 Maintenance 11
 1.8 Compatibility with Other LID Practices .. 11

2. CURB OPENINGS 23
 2.1 Applicability and Advantages 21
 2.2 Design Considerations 21
 2.3 Construction Considerations 24
 2.4 Maintenance 21
 2.5 Compatibility with Other LID Practices .. 24

3. SEDIMENT TRAPS 27
 3.1 Applicability and Advantages 28
 3.2 Design Considerations 28
 3.3 Construction Considerations 28
 3.4 Maintenance 28
 3.5 Compatibility with Other LID Practices .. 28
 3.6 Specifications 29

4. STORMWATER HARVESTING BASINS 31
 4.1 Applicability and Advantages 32
 4.2 Design Considerations 32
 4.3 Construction Considerations 33
 4.4 Maintenance 33
 4.5 Compatibility with Other LID Practices .. 33
 4.6 Specifications 33

5. VEGETATED OR ROCK BIOSWALE 35
 5.1 Applicability and Advantages 36
 5.2 Design Considerations 36
 5.3 Construction Considerations 37
 5.4 Maintenance 37
 5.5 Compatibility with Other LID Practices .. 37
 5.6 Specifications 37

6. BIORETENTION SYSTEMS 41
 6.1 Applicability and Advantages 42
 6.2 Design Considerations 42
 6.3 Construction Considerations 43
 6.4 Maintenance 44
 6.5 Compatibility with Other LID Practices .. 44
 6.6 Specifications 44

7. CURB EXTENSION 47
 7.1 Applicability and Advantages 48
 7.2 Design Considerations 48
 7.3 Construction Considerations 48
 7.4 Maintenance 49
 7.5 Compatibility with Other LID Practices .. 49
 7.6 Specifications 49

8. BIORETENTION PLANTER 51
 8.1 Applicability and Advantages 52
 8.2 Design Considerations 52
 8.3 Construction Considerations 53
 8.4 Maintenance 53
 8.5 Compatibility with Other LID Practices .. 53
 8.6 Specifications 53

9. DOMED OVERFLOW STRUCTURE 57
 9.1 Applicability and Advantages 58
 9.2 Design Considerations 58
 9.3 Construction Considerations 58
 9.4 Maintenance 58
 9.5 Compatibility with Other LID Practices .. 58
 9.6 Specifications 58

SECTION 3: LANDSCAPE DETAILS & SPECIFICATIONS 60

10. GEOLOGIC SETTING 60
11. SOILS 60
12. PLANT PALETTE 61
13. MAINTENANCE 62
14. RECOMMENDATIONS AND GUIDELINES 62
15. RECOMMENDATIONS 63
16. SPECIFICATIONS 63
17. GUIDELINES 63
18. GLOSSARY 77
19. REFERENCES 78

APPENDICES
A. Rain Gauge Measurements A1
B. Rainfall Tables A14
C. Additional Plant Lists A15

LIST OF TABLES

Table 1: Application of Permeable Pavements B
Table 2: Operation and Maintenance Tables for Permeable Pavements 12
Table 3: Base Course Gradations 13
Table 4: Recommended Depth of Bioretention Mats to Target Pollutant of Concern A3
Table 5: Compost 76
PERMEABLE PAVEMENTS

- Allow streets, parking lots, and other typically impervious covers to utilize the infiltration capacity of underlying soils.
- Are suitable for low to moderate vehicular use areas.
- Are not suitable for high-speed (>30 mph) roadways or areas designed for high structural loads.
- Are not recommended where high pollutant loads are expected.
- Must be maintained regularly to remain effective.
CURB OPENINGS

- Convey runoff into and out of LID features such as bioswales or bioretention areas.
- Can be new construction or retrofitted.
- Must be designed with roadway speeds and clear zone offsets in mind.
- Must be kept clear of debris and inspected after storms of ≥ 0.5 inches to ensure they are not clogged.
- Can be used in conjunction with vegetated/rock bioswales; stormwater harvesting basins; sediment traps; and bioretention systems.

Image courtesy of City of Mesa
SEDIMENT TRAPS

- Collect sediment and other debris in areas of concentrated stormwater flows before the water enters a stormwater capture or LID facility.
- Must be maintained by removing sediment and debris monthly and after storms of ≥ 0.5 inches.
- Serve as an accessory to other LID facilities or conveyance structures.
- Can be used in conjunction with curb openings and vegetated/rock bioswales.
STORMWATER HARVESTING BASINS

- Also referred to as rain gardens.
- Consist of shallow vegetated earthen depressions that collect stormwater and cleanse it before percolation into the subsurface.
- Provide subsurface storage within the constructed facility.
- Are typically landscaped and should be built adjacent to impervious areas like parking lots.
- Are scalable—can be built at any size.
- Must be checked for erosion, sediment, debris, and clogging semiannually and after storms of \(\geq 0.5 \) inches. Underdrains must be cleaned when standing water is present.
- Serve as an accessory to other LID facilities or conveyance structures.
- Can be used in conjunction with curb openings, bioretention systems, and sediment traps.

Image courtesy of Craig Coronato
VEGETATED AND ROCK BIOSWALES

- Consist of open shallow channels with vegetation on the bottom and side slopes, in addition to pervious plating (i.e. decomposed granite, rock, or mulch).
- Are designed to slow runoff flows.
- May provide water harvesting opportunities and may allow percolation of cleansed stormwater into the ground.
- Must be checked for erosion, sediment, debris, and clogging semiannually and after storms of ≥ 0.5 inches. Sediment traps may be added to reduce maintenance requirements.
- Can be used in conjunction with curb openings, sediment traps, bioretention facilities, and permeable pavements. Overflow structures are required when the system is connected to a downstream drainage or bioretention facility.
- May require a series of checkdams to control speed/velocity of stormwater runoff in steeper, sloping instances.
BIORETENTION SYSTEMS

- Are primarily designed to remove pollutants through an engineered soil media.
- Are typically landscaped.
- Can be designed to allow water to percolate into the subsoil or to direct it to a downstream drainage system.
- Are well-suited to urban areas with highly impervious surfaces where space is limited.
- Should be constructed with a sediment trap at the inlet to prolong the facility’s lifespan.
- Should be inspected quarterly and after storms of ≥ 0.5 inch and cleaned of sediment and debris.
- Can be used in conjunction with sediment traps and curb openings.
CURB EXTENSIONS

- Are designed to create an opportunity for the bioretention of street runoff and to provide a space for trees and plants.
- Are typically landscaped.
- Can be used along low-speed roadways, driveways, and parking lots.
- Can be used as a traffic-calming measure.
- Are easy to retrofit.
- Should be inspected quarterly and after storms of ≥ 0.5 inch and cleaned of sediment and debris.
- Can be used in conjunction with curb openings, sediment traps, permeable pavements, and overflow structures.

Image courtesy of Watershed Management Group
BIORETENTION PLANTERS

- Are small-scale bioretention cells typically located in hardscaped areas between the curb and sidewalk.
- Are typically landscaped.
- Do not connect to a downstream drainage facility.
- May require railings or curbs for pedestrian safety.
- Should be inspected quarterly and after storms of ≥ 0.5 inch and cleaned of sediment and debris. Cleanout risers should also be inspected.
- Can be used in conjunction with curb openings.

Image courtesy of Tim Conner
DOMED OVERFLOW STRUCTURES

- Allow ponding within multiple stormwater capture facilities and provide an outlet for larger storm events that exceed the capacity of each facility.
- Drain into a downstream collection facility.
- Should be inspected quarterly and after storms of \(\geq 1.25 \) inch and cleaned of sediment and debris. Encroaching vegetation should be pruned or removed to maintain a landscape buffer.
- Can be used in conjunction with LID elements that involve surface water or ponding, such as vegetated or rock bioswales and stormwater harvesting basins.
LANDSCAPING DETAILS

- LID/GI is a landscape-based technique.
- Native vegetation is sparse in Maricopa County, so purposely installed landscaping is needed to provide vegetative cover for most LID elements.
- LID/GI techniques must take into account the soils in Maricopa County, which:
 - Result from the disintegration of mountain ranges.
 - May have high salt content.
 - Are generally alkaline.
 - May include impermeable layers like caliche.
 - Have low organic content.
Plants best equipped to deal with conditions in Maricopa County are native or desert-adapted.

Multiple agencies have produced plant lists, such as the Arizona Department of Water Resources Low Water Use Drought Tolerant Plant List.

Many low water use/desert adapted plants can survive on rainwater after a 1 – 2 year establishment period; others require some supplemental watering.

Plant size at maturity and planting locations should be carefully considered.
Landscaping Details

- Plant maintenance requirements are of concern to those considering LID and have an effect on the efficiency of the techniques used.
- Plants should be allowed to grow into their natural shape; reduced pruning also reduces maintenance costs.
- See the Handbook for recommendations for landscaping, guidelines, details, Bioretention Soil Media (BSM), and maintenance.
ADDITIONAL RESOURCES

- The Low Impact Development Toolkit prepared for the cities of Mesa and Glendale (available at https://www.mesaaz.gov/home/showdocument?id=14999).

- Pima County LID Working Group (http://webcms.pima.gov/cms/one.aspx?portalId=169&pagId=65263).
THANK YOU!

- Reach out to us at:
 - Presenter 1 name, email, phone number
 - Presenter 2 name, email, phone number
Questions?