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Abstract:
Managing and regulating exploited ecosystems is a critical issue because of uncertainties, non-linear
dynamics, and time delays. Decision-makers often have to act before critical times to avoid the
collapse of ecosystems using imperfect knowledge. Adaptive management may help managers tackle
such issues. However, because the knowledge infrastructure required for adaptive management may be
mobilized in several ways, we study how the following typology of knowledge and its use may impact
the safe operating space of exploited ecosystems: 1) knowledge of the past based on a time series
distorted by measurement errors; 2) knowledge of the current systems dynamics based on the
representativeness of the decision makers mental models of the exploited ecosystem; iii) knowledge of
future events based on decision-makers likelihood estimates of extreme events based on modeling
infrastructure (models and experts to interpret them) they have at their disposal. We consider
different adaptive management strategies of a general regulated exploited ecosystem model and we
characterize the robustness of these strategies to imperfect knowledge. Our results show that even
with significant mobilized knowledge and optimal strategies, imperfect knowledge may still shrink the
safe operating space of the system leading to the collapse of the system. However, and perhaps more
interestingly, we also show that in some cases imperfect knowledge may unexpectedly increase the safe
operating space by suggesting cautious strategies. Beyond the quantitative results, we focus on the
importance of understanding the subtleties of how adaptive knowledge mobilization and knowledge
infrastructure affect the robustness of exploited ecosystems.
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Key Points:9

• We have built a typology of knowledge used for regulating uncertain exploited ecosys-10

tem.11

• According to the mobilized and available knowledge, we consider several stylized12

adaptive management strategies.13

• These strategies are more or less robust to imperfect knowledge and may broadly im-14

pact the safe operating space of regulated exploited ecosystems.15
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Abstract16

Managing and regulating exploited ecosystems is a critical issue because of uncertainties,17

non-linear dynamics, and time delays. Decision-makers often have to act before critical times18

to avoid the collapse of ecosystems using imperfect knowledge. Adaptive management may19

help managers tackle such issues. However, because the knowledge infrastructure required20

for adaptive management may be mobilized in several ways, we study how the following ty-21

pology of knowledge and its use may impact the safe operating space of exploited ecosys-22

tems: 1) knowledge of the past based on a time series distorted by measurement errors; 2)23

knowledge of the current systems’ dynamics based on the representativeness of the decision-24

makers’ mental models of the exploited ecosystem; iii) knowledge of future events based on25

decision-makers’ likelihood estimates of extreme events based on modeling infrastructure26

(models and experts to interpret them) they have at their disposal. We consider different27

adaptive management strategies of a general regulated exploited ecosystem model and we28

characterize the robustness of these strategies to imperfect knowledge. Our results show that29

even with significant mobilized knowledge and optimal strategies, imperfect knowledge may30

still shrink the safe operating space of the system leading to the collapse of the system. How-31

ever, and perhaps more interestingly, we also show that in some cases imperfect knowledge32

may unexpectedly increase the safe operating space by suggesting cautious strategies. Be-33

yond the quantitative results, we focus on the importance of understanding the subtleties of34

how adaptive knowledge mobilization and knowledge infrastructure affect the robustness of35

exploited ecosystems.36

1 Introduction37

Managers of exploited ecosystems are continually struggling with sustaining resource38

exploitation while addressing the need to conserve the underlying ecosystems that support it.39

One solution relies on adaptive management that enables decision-makers to balance these40

needs in a dynamical way based on the state of the exploited ecosystem. This concept of41

adaptive management was developed in the 1980s [Milliman et al., 1987; Walters, 1986] for42

fisheries and was then picked up by scholars for managing a diversity of ecosystems [Mil-43

lar et al., 2007; Pahl-Wostl, 2007; Bohnet, 2010] in the face of uncertainties and hazards.44

However, there is continued debate regarding the effective implementation of adaptive man-45

agement in practice McLain and Lee [1996]; Walters [1997]. These debates focus on learn-46

ing processes [Pahl-Wostl, 2009a], how knowledge capital grows, and how available knowl-47
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edge is mobilized by stakeholders [Bohnet, 2010; Anderies et al., 2016; Frischmann, 2005].48

Here we focus on the broader question of the role that human infrastructure (knowledge and49

decision-making skills embodied in people) and knowledge infrastructure (stock of stored50

knowledge and the infrastructures that create, communicate, and maintain it such as sensors,51

IT systems, organizations, etc.) play in adaptive management.52

Based on several existing stylized management strategies, we propose a typology of53

knowledge (based on characteristics of available knowledge infrastructure) and managers54

(based on how they use knowledge in the decision-making process). Because of the com-55

plexity and diversity of the technical, economic, and social processes involved, the creation,56

curation, and use of knowledge is necessarily imperfect. This is a fundamental issue that57

all resource managers and decision-makers must face [Rogers et al., 2000; Yokomizo et al.,58

2014]. Therefore, once we have classified several stylized adaptive management strategies59

according to our typology, we analyze their robustness to imperfect knowledge.60

In addition, our analysis contributes to the refinement of the practical application of61

robustness concepts in the context of exploited ecosystems [Anderies et al., 2007; Anderies62

and Janssen, 2013; Anderies et al., 2013]. There are many options for quantifying robustness63

such as, for example, sensitivity of performance measures or characterization of the worst64

case [Rodriguez et al., 2011]. Many studies are based on pathway-based robustness that are65

not completely compatible with the concept of adaptive management which relies on real-66

time knowledge of the system. Therefore, instead of thinking in terms of pathways, we use67

a set-based indicator. The concept of safe operating space (SOS) [Rockström et al., 2009;68

Carpenter et al., 2015, 2017] seems particularly appealing in our case: we identify a suitable69

set of solutions that can be accessed through adaptive management and use the size of the70

SOS for characterizing the robustness of stylized adaptive strategies to imperfect knowledge.71

In order to illustrate these concepts, we use a general model of a regulated exploited72

ecosystem based on the work of Clark et al. [Clark, 1973; Clark and Gordon, 1975]. We73

compare the size of the SOS for each stylized strategy in the spirit of the recent work of74

[Carpenter et al., 2015]. Finally, we test the robustness of the strategies in the case of im-75

perfect knowledge before discussing new insights in terms of the management of knowledge76

infrastructure.77
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2 A general model of regulated exploited ecosystems78

2.1 Unregulated exploited ecosystem79

Many models of exploited ecosystems have been developed based on variations in-80

spired by the general model studied by Clark [Clark, 1973] to explore the impacts of human81

actions on ecosystems:82

dx
dt
= F(x) − Y (x) (1)

Where x is the state (e.g., biomass) and F(x) represents the regenerative dynamics of a83

natural resource system. Y (x) represents human impacts on the natural system. Many studies84

have analyzed variations of this model system in terms of optimal or robust management un-85

der different assumptions about uncertainty, and the forms of F(x) and Y (x). Some messages86

of this work are relevant to knowledge infrastructure: there are inherent trade-offs associated87

with how knowledge is used to build robustness to certain classes of shocks [Anderies et al.,88

2007], suppressing variance can shrink the SOS [Carpenter et al., 2015], and depending on89

whether uncertainty is endogenous or exogenous, it may induce precautionary or aggressive90

management decisions [Polasky et al., 2011].91

For clarity, for F(x) we choose the widely used logistic function (with a growth rate92

r) that takes into account the carrying capacity K of the system and a minimum size of the93

population α such that survival is impossible [e.g., Clark, 1973] (due to predation or Allee94

effects for instance):95

F(x) = r(K − x)(x − α). (2)

Note that considering α = 0 leads to a logistic growth function without natural col-96

lapse. Having a natural collapse for x < α does not change the results in what follows. The97

exploitation function Y (x) is proportional to human resource extraction effort e:98

Y (x, e) = ex(t) (3)

where we have scaled e to dispense with the usual constant of proportionality, i.e., set the99

"catchability/extractibility" coefficient to 1. This model has been broadly studied in the liter-100

ature (especially in the case of α=0). According to the value of effort e, we can have either 0,101
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1 or 2 equilibria, i.e., the net recruitment compensates the removal due to exploitation. When102

the exploitation rate exceeds net recruitment, we have an overexploitation of the system (see103

the orange part on Figure 1a, in the case of e=0.35). If the effort e is constant, overexploita-104

tion will lead to the collapse of the ecosystem. However, if we consider an adaptive manage-105

ment of the effort, i.e., we can change the effort value e over time according to the state of106

the exploited ecosystem, the problem becomes much more difficult to address. For instance,107

under what conditions can the system recover from overexploitation? What are the economic108

implications? These questions require that we consider the net revenue π for various levels of109

exploitation, classically expressed as follows:110

π = pY (x, e) − ce (4)

where p represents the price per unit of biomass and c the cost of effort. Bioeconomic treat-111

ments of this problem typically explore policies (time paths of e(t)) that maximize some112

functional of π(t), e.g., the (expected) discounted net present value of value flow of π(t).113

These treatments typically make rather restrictive assumptions about the knowledge infras-114

tructure at the disposal of managers, distributional issues, utility structures, etc. Our objec-115

tive here is to relax these assumptions as much as possible and explore how various strategies116

to deploy knowledge infrastructure impact the capacity of the system to deliver valued flows117

over time.118

As such, we suppose that the objective of the governing body (we are not concerned119

here with problems of governance and collective action) is to ensure a minimum net revenue120

πmin per unit effort:121

px − c ≥ πmin ⇔ x ≥ c + πmin

p
(5)

This is a condition on the per-unit effort profit flowing from the resource and can be inter-122

preted as the governing body wishing to maintain minimum livelihood standards for resource123

users. If πmin > 0, management action pushes the system away from the open access bioeco-124

nomic equilibrium to a new more preferable equilibrium, xev = c+πmin

p . This latter equation125

constitutes the economic constraint of our exploited ecosystem. We also consider a mini-126

mum value of the effort (emin) (exploitation cannot be fully stopped), which constitutes a127

socio-political constraint. This general model of exploited ecosystems exhibits three types of128

equilibria (see Figures 1a and 1b)129
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• "sustainable equilibria": the system is profitable for the user and the ecosystem doesn’t130

collapse;131

• "ecological equilibria": the system doesn’t collapse but it is not profitable for stake-132

holders;133

• "tipping points": unstable equilibria (that can be described by both ecological tipping134

points and sustainability tipping points).135

The combination of these equilibria and the objectives of the user—i.e., not to collapse136

and to be minimally profitable—enables us to define the following sets (Figure 1b):137

• a set from where the system collapses because of overexploitation (golden area, right138

side). The exploitation Y (x) is too high relative to the net recruitment F(x), yielding139

Y (x) > F(x);140

• a set from where the system collapses because of its ecological properties. For x < α,141

the population is not large enough in order to survive (because of biological/predation142

issues);143

• an unprofitable set without the collapse of the system (blue area). This set corre-144

sponds to the basin of attraction of the ecological equilibria. The effort is not suffi-145

cient in order to be profitable;146

• a transitory unsustainable set (yellow area, narrow horizontal sliver): the exploited147

ecosystem is not profitable yet but the ecological dynamics will naturally increase148

the biomass making the ecosystem profitable in the long-term (if the effort is held149

constant while the ecosystem recovers);150

• a sustainable set (green area) defined as the safe operating space (SOS) of the ex-151

ploited ecosystem: in this set, the exploited ecosystem will converge to the sustainable152

equilibria. The SOS is the basin of attraction of the sustainable equilibria.153

2.2 Regulation for mitigating overexploitation154

Most stocks of European fisheries are overfished [Froese et al., 2011] leading to in-155

ternational fishery agreements. These agreements rely on objectives based on the maximum156

sustainable yield (MSY). However this policy view relies on a static objective that may ig-157

nore sustainable dynamical pathways: allowing overexploitation in the short-term may en-158

able the system to be sustainable in the long-term whereas constraining the system to reach159

a precautionary target biomass (such as 90% of the MSY biomass) in the short-term may not160
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comply with socio-economic constraints of the system in the long-term. Let’s consider the161

following "open access" dynamics of the effort e:162

de
dt
= βe(px − c)(1 − e). (6)

Here, the effort e will increase until the biomass x decreases towards c/p at a rate de-163

termined by the coefficient β or e reaches a maximum level of 1 (everyone in the fishery is164

fishing). From an ecological point of view, two situations are possible according to the value165

of c/p: 1) c/p is high: the system is not very profitable and exploitation will stop before the166

collapse of the system (the open access equilibrium effort level is in the SOS); 2) c/p is low167

yielding a very profitable exploited ecosystem in which users tend toward an exploitation168

level such that the system will collapse even if users stop exploitation of the system based on169

Equation (5). The second case characterizes potential overexploitation and requires regula-170

tion.171

To capture the notion of regulation rules mathematically, consider the following con-172

trolled dynamics of the effort e:173

de
dt
= βe(px − c − a(t))(1 − e) (7)

where a(t) ∈ [0, amax] is the control and can be interpreted as a user fee of some sort such as174

an annual licensing fee.175

As such, our modelled decision-makers aim at choosing the right value of a(t) based176

on the dynamics of the ecosystem and exploitation level. To illustrate the subtle interactions177

between stock and effort dynamics associated with choices of a(t), Figure 1-c represents the178

phase diagram of the regulated ecosystem dynamics (a(t) = amax) with a trajectory (in green)179

as well as a trajectory of the unregulated ecosystem (a(t) = 0). The regulated trajectory is180

also represented on Figure 1-d. Two main insights may be extracted from this graphic. First,181

there is a delay in terms of effort adaptation according to current biomass (Figure 1d) yield-182

ing a risk of: overexploitation (point A), underexploitation (point C) or stock collapse (point183

B). This time delay is mainly due to the nature of the regulation that acts as an integral con-184

troller. In order to avoid stock collapse, decision-makers have to avoid ecosystem dynamics185

with a low biomass (like point B). The second insight relates to the delay in effort adaptation:186

what might be viewed as a conservative strategy of imposing maximum fees (a = amax) is187
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not the most effective management strategy to avoid collapse because of this time delay. For188

instance, on Figure 1c, from the starting point, the system will go through point B with maxi-189

mum fees imposed. For limiting the risk of stock collapse, it is better to 1) have no regulation190

from the starting point to point D, 2) recognize that regulation has little effect on the dynam-191

ics from point D to point E; 3) impose maximum fees from point E on. Therefore, the best192

strategy requires switching between regulation and no regulation according to the state of the193

ecosystem.194

In the deterministic case just discussed, the program for decreasing/increasing the tax195

a(t) over time is relatively intuitive. However the uncertain case faced by managers in the196

real world, devising strategies to stay in the safe operating space is much more difficult. For197

instance, consider adding a stochastic process U(t) (e.g., white noise) in Equation 8:198

dx
dt
= F(x) − Y (x) +U(t) (8)

First, we recall that such a system will be sustainable at an infinite time horizon with199

probability zero if U(t) has infinite support (which is the case in practice). Therefore, to de-200

fine the SOS in the stochastic case it is important to introduce the time horizon of interest,201

denoted T hereafter. Our goal, therefore, is to calculate the probability of maintaining the202

sustainability of the system from time zero to T by complying with the economic and socio-203

political constraints and avoiding collapse of the stock.204

2.3 Mobilizing knowledge infrastructure205

Good decisions require the injection of knowledge into the decision-making process:206

bad decisions may result from good decisions based on wrong (or incomplete) knowledge.207

However, having full and perfect knowledge is a holy grail for managers that seems unre-208

alistic in practice due to the volume of required knowledge, i.e., time series, biological and209

economic processes, hazards etc. This assumption of full knowledge access seems less ques-210

tionable in the case of industrial production: production lines are typically well controlled211

with reliable knowledge infrastructure based on the technological deployment of reliable sys-212

tems (based on sensors, new materials etc.). In the case of natural resources, the question of213

full knowledge access is much more complex. Managers have to mobilize knowledge infras-214

tructure including people, organizations, technology, and a science establishment to gather,215

interpret, and act on knowledge [Frischmann, 2005]. Therefore, how does the process of216
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knowledge infrastructure mobilization influence the sustainability of exploited ecosystems?217

How does imperfect knowledge impact the system? The answers to these questions clearly218

depend on the implementation of the management strategy.219

3 Adaptive management of exploited ecosystems232

3.1 Stylized adaptive strategies233

Various adaptive management strategies may effectively keep an exploited ecosystem234

within its safe operating space. However, they may come at very different costs and levels235

of complexity. For example, early warning approaches (based on variance for instance) in-236

volve efficient measures against uncertainties and avoiding tipping points [Lenton et al.,237

2008; Scheffer et al., 2009; Dakos et al., 2008, 2012] while backwards techniques enable238

managers to take into account the dynamics of the system [Rougé et al., 2013; Rougé et al.,239

2014; Rougé et al., 2015; Brias et al., 2015]. Here we highlight the impact of various adap-240

tive management strategies on system collapse. For this purpose, we consider five types of241

regulation functions a(t) (more details are available in SI, specifically regarding the control242

maps of each manager). The regulation functions are listed in order of increasing complexity243

and, with it, implementation costs:244

• The "Annual License Fee" (ALF) manager regulates the ecosystem through a fixed245

annual license fee, which is the same for all users, independent of their effort levels.246

In what follows, this annual license fee equals amax. This option is the cheapest rel-247

ative to the following strategies in terms of mobilizing knowledge infrastructure be-248

cause it only requires basic infrastructure for listing users, collecting payments, and249

license monitoring.250

• The "Flat Tax" (FT) manager proportionally adapts the value of a(t) according to251

the effort e: a(t) = γ1e + γ2. This option is more expensive than the previous one—it252

requires monitoring of effort, collecting of tax, and may also require monitoring of the253

exploited system to choose the tax.254

• The "Early Warnings" (EW) manager monitors variance of the system for prevent-255

ing failures due to uncertainties (he uses knowledge about time series) [Scheffer et al.,256

2009]. If the short-term variance is low, there is no tax (a = 0), if the short-term vari-257

ance is high, the tax is maximum (a = amax). Controlling or assessing surrogates of258

stock variance may be a less expensive alternative to direct measurement of variance.259
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a - Net recruitment F(x) and exploitation b - Equilibria and associated sets

function Y (x) according to biomass. in the case of constant exploitation

c - Effect of regulation on the dynamics of the ecosystem d - Effect of effort adaptation on the ecosystem dynamics

Figure 1. Managing exploited ecosystem. Decision-makers aim at assessing sustainable strategies that

enable them to exploit the ecosystem without its collapse. Figure 1a recalls the trade-off between the net

recruitment and the exploitation function. Such a figure has been broadly used for studying overexploitation

and equilibrium. Considering an economic constraint yields new equilibria with a corresponding set as shown

on Figure 1b (see the main text). Introducing effort dynamics may change the dynamics (Figure 1c) especially

if there is a delay in terms of effort adaptation according to available biomass (Figure 1d) yielding a risk of:

overexploitation (point A), underexploitation (point C) or stock collapse (point B). In order to avoid stock col-

lapse, decision-makers have to avoid ecosystem dynamics with a low biomass. However, imposing maximum

fees (a = amax) is not the optimal management strategy because of this time delay. For instance, on Figure 1c,

from the starting point, the system will go through point B with maximum fees. For limiting the risk of stock

collapse (at point B), it is better to 1) have no regulation until point D, 2) recognize that regulation policy has

little effect on the dynamics from point D to point E; 3) to have maximum fees from point E on.

220

221

222

223

224

225
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227

228

229

230

231
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• The "Maximum Sustainable Yield" (MSY) manager aims at keeping the system260

close to the maximum sustainable yield (MSY). This manager is concerned more261

about biological overexploitation than economic overexploitation since MSY is never262

economically optimal—it is always above the economically optimal stock level. MSY263

is supported by a stable population size, denoted xMSY . Below the xMSY , there is no264

tax (a = 0), above the xMSY the tax is maximum (a = amax). Note that a "maxi-265

mum economic yield" will produce similar results with the difference that the MEY266

manager is more conservative (the MEY is below the MSY). This option is even more267

expensive; it requires whole departments to do stock surveys, build stock-recruitment268

models, scientists to interpret data, etc. as well as collect tax.269

• The "Optimal Adaptive Effort" (OAE) manager takes decisions based on assess-270

ment of uncertainties, knowledge of the dynamics of the system, and time series.271

The control is optimized to avoid failure of the exploited ecosystem [Rougé et al.,272

2013]. The value of a(t) is adaptive and depends on the current state of the system273

and is chosen to maximize the probability of sustaining the exploited ecosystem to a274

given time horizon T . This option is the most expensive because it requires a perfect275

knowledge infrastructure: soft-human made infrastructure for regulation processes,276

hard-human infrastructure for monitoring the biological system (through sensors for277

instance), etc.278

The purpose of our analysis is to compare these strategies and the effect of the regu-279

lation a(t) on the SOS. When managers consider the probability of sustainability at a given280

time horizon T as their criteria, they need full knowledge of the exploited ecosystem, and281

more specifically, knowledge on the probabilistic distribution of uncertain events. However,282

EW managers only need a time series for making decisions. These five types of management283

show the trade-off between the expectations of decision-makers and the knowledge they need284

for achieving these expectations.285

3.2 Typology of knowledge286

According to [Holling, 1978; Walters, 1986], active learning enables managers to287

change and adapt policy in response to past events and present states of the exploited ecosys-288

tem. According to the different management strategies defined above, different types of289
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knowledge may be mobilized (see Table 1). We propose the following typology of knowl-290

edge that is used in the decision-making process (see Figure 2):291

• Knowing the past based on time series (x(t), x(t−1), x(t−2), ...) (denoted as knowledge292

K1). We suppose that decision makers use this information in their decision process.293

It requires a monitoring of the system. It is necessary to define what the relevant mea-294

surements are and what the monitoring frequency is, yielding investment and mainte-295

nance in monitoring infrastructure (sensors, people, etc.).296

• Knowing current ecological dynamics F (denoted as knowledge K2). Interactions297

within the exploited ecosystem are assessed (social and ecological interactions). In-298

teractions between the exploited ecosystem and the decision makers as well as the299

exogenous drivers (such as climate change or inherent variability) are also known. It300

requires experts in several interacting areas (climate scientists, biologists).301

• Knowledge of future events based on the properties of uncertainties U (denoted as302

knowledge K3) such as the probability distribution of drivers is used during the deci-303

sion process. Standard and extreme events are characterized from data or from exper-304

tise (from climate scientists to mathematicians).305

• Knowing exploitation levels based on the users’ declaration (denoted as knowledge306

K4): managers aim at assessing how the ecosystem is exploited. As K1, it requires307

investment in monitoring the exploitation of the system.308

The proposed typology mixes the object-based knowledge (times series, events, dy-310

namics) and time-based knowledge (past, present, future). We acknowledge that a more de-311

veloped typology may be considered by crossing object-based knowledge and time-based312

knowledge. This can be particularly true if learning processes are well established along313

with "object-object," "time-time" or "object-time" relationships. However, in our analysis314

we restrict our attention to the typology composed of these four categories to keep the prob-315

lem tractable. Indeed, assessing these four categories of knowledge is already challenging316

in practice: many technical and social processes may yield biases in knowledge assessment317

such as the following:318

• Measurement errors (also known as observation errors) on time series, affecting K1.319

Measurement errors in time series [S. R. Carpenter, 1994] may cause substantial dif-320

ficulties in the understanding of the exploited ecosystem [Ives et al., 2003]. Many321
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Manager Regulation Knowledge Adaptation Control Relative

cost

Annual

Licence Fee

(ALF)

Defining a con-

stant Annual

Licence Fee

- - a(t)=cst $

Flat tax Flat tax or admit-

tance fees

K4 K4 a(t) = γ1e(t) + γ2 $ $

Early-

Warnings

Limiting short-

term variance of

the ecosystem

biomass

K1 K1 a(t) = 0 if V(x(t)) <

cst; a(t) = amax if

V(x(t)) > cst

$ $

MSY MSY policy K1, K2 K1 a(t) = 0 if x(t) >

xMSY ; a(t) = amax if

x(t) < xMSY

$ $ $

Optimal

Adaptive

Effort

Defining optimal

policy according

to the state of the

ecosystem

K1, K2,

K3, K4

K1, K2,

K3, K4

maxa(t) Ps(T), ∀t $ $ $ $

Table 1. Objectives used in the decision-making process for different management strategies.309
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methods exist in order to limit this measurement error in the time series [Ives et al.,322

2003] but such errors inevitably persist in the assessment of the time series in the ex-323

ploited ecosystem.324

• Representativeness of interactions affecting K2. Representing socio-ecological sys-325

tems and their complexity remains a critical issue [Forrester et al., 2014] that can be326

a significant barrier to producing useful models [Walters, 1997]. If the representative-327

ness is perfect, interactions are representative of the reality. However, measurement328

errors (involving calibration errors), biases, beliefs, and values may affect how the329

system is perceived [Tversky and Kahneman, 1974]. Such cognitive biases are com-330

plex and evolved over time. In what follows, we neglect the evolution of cognitive331

biases and we only test the influence of a wrong representation on the system. For332

instance, if the actual carrying capacity, K , is 5, how the system is affected if the man-333

ager believes that K=8?334

• Likelihood of extreme events affecting K3. Globalization and anthropogenic pres-335

sures yield a diverse and broad set of hazards that may affect the SOS of the exploited336

ecosystem. Such hazards (especially tail distributions) are difficult to model and to337

predict due to non-linearities and multiple interactions. Moreover, there is a natural338

tendancy to underestimate the frequency of extreme events because the knowledge as-339

sociated to these extreme events remains limited [Plag et al., 2015]. The likelihood340

of events corresponds to the ability to correctly predict events, e.g., the probability341

distribution. For instance, underestimating the likelihood of extreme events can be342

catastrophic for the system, while overestimating the likelihood of extreme events may343

yield useless precautions. As representativeness, the mental representation of likeli-344

hood may evolve over time according to past events and learning. Here, we slightly345

change the standard deviation of uncertainties U(t). In other terms, how is the system346

affected if the manager underestimates (or overestimates) the likelihood of extreme347

events?348

• Errors in exploitation declaration affecting K4. "Errors" include false declaration as349

well as unconscious error, caused by administration complexity or other exogenous350

processes.351

In our framework, measurement errors, likelihood, errors in declarations, and represen-352

tativeness can be viewed as knowledge filters that can evolve over time according to learning353

processes (see Figure 2). These four processes (measurement errors, representativeness, like-354
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Figure 2. Decision-making process of regulated exploited ecosystem through the lens of the proposed

knowledge typology.

364

365

lihood, errors in declaration) are naturally dependent. For instance, measurement errors first355

affect the quality of time series but if time series are used for calibrating the model, the rep-356

resentativeness of the model will be diminished. In what follows, we will test simple cases357

in order to explore how relationships between different knowledge types and their biases may358

broadly impact ecosystem management. For instance, is it better to have accurate knowledge359

based on poor representativeness or approximate knowledge based on a good representative-360

ness of the system? The answer to such questions clearly depends on the adaptive manage-361

ment strategy decided by managers. In what follows, we explore such interactions between362

knowledge mobilization and management strategies.363

4 How is the safe operating space impacted by adaptive management in the case of366

perfect knowledge?367

In order to compare the influence of different management strategies on the safe op-368

erating space (SOS), we define the SOS as the set of system states for which the probabil-369

ity of complying with economic, ecological, and socio-political constraints during the time370

horizon T is above a predefined threshold as done in [Carpenter et al., 2015]. Indeed, the371

SOS approach does not require any particular conditions on the trajectories of the exploited372

ecosystem, as long as the exploited ecosystem stays in the SOS [Carpenter et al., 2015]. Fur-373

ther, rather than managing for a single, optimal state, decision makers have to manage the ex-374

ploited ecosystem within a range of acceptable outcomes while avoiding irreversible negative375
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effects and keeping flexibility in their decision-making process [Johnson, 1999]. The SOS is376

defined by the set of initial states with a sustainability probability higher than 0.9. Figure 3377

shows the SOS according to initial biomass and effort (with 1000 simulations, see SI).378

Our results show that adaptive management (like OAE manager) of the system enables379

decision-makers to enlarge the SOS as we would expect; when more knowledge is mobi-380

lized, SOS is larger. The OAE manager exhibits the largest SOS and constitutes our reference381

manager: she knows everything and effectively uses her knowledge. Her strategy results in382

decreasing the number and amplitude of cycles experienced by the system as it converges to-383

ward the stable equilibrium). In order to reach the equilibrium faster, the following are the384

main components of the strategy (see SI for more details): 1) decreasing the tax in areas of385

state space with low biomass and low effort and 2) increasing tax in other areas. The most386

interesting aspect of this strategy is decreasing the tax at low biomass and allowing more387

effort. This sort of non-intuitive action results from fully incorporating the non linear eco-388

logical dynamics: this action will reduce the amplitude of system overshoot (and thus the389

probability of exiting the SOS) at a later time.390

The MSY manager uses a similar strategy in the sense that the biomass level is used391

for increasing/decreasing the tax (according to MSY). But MSY decision-making is static392

and does not take into account the dynamics of the ecosystem (especially the equilibrium cy-393

cle convergence) and the effort level. The flat tax manager takes into account the effort level394

in her strategy but does not consider the biomass level, yielding unsafe exploitation. The395

ALF manager does not account the biomass nor the effort level. Finally, the EW manager396

adapts his strategy according to the biomass variance and does not take into account the ef-397

fort level. Note that if the EW manager is very cautious (for instance, he is sensitive to very398

small changes), his results will converge to the ALF manager.399

5 Robustness to imperfect knowledge402

In this analysis, we suppose that there are biases in knowledge assessment to explore403

how the system evolves when managers mobilize imperfect knowledge of the ecosystem. In404

what follows, we consider imperfect knowledge in the decision-making process of man-405

agers, that may potentially affect the SOS. Note that the SOS remains the same when406

the imperfect knowledge is not used by managers. For instance, we consider four cases:407
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a - ALF manager b - FT manager

c - MSY manager d - EW manager

e - OAE manager f - Example of trajectories

Figure 3. Safe operating space of the different managers (during 100 time steps). The SOS is described by

the probability of sustainability higher than 0.9.

400

401
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• Imperfect knowledge of type K1. We suppose that managers overestimate the biomass408

x(t). This impacts the decisions of all managers except the ALF and the "flat tax"409

manager who never changes her strategies according to the biomass (see Table 1).410

Interestingly, the size of the SOS of adaptive managers decreases more relative to the411

non-adaptive strategy if the biomass overestimation is too significant. In this case,412

a non-adaptive strategy (such as ALF strategy) may be better than adaptive strategy413

(such as an OAE strategy) based on an overestimation of the biomass. On the other414

hand, the SOS of EW-based management is surprisingly increased (see SI for more415

details). Indeed, overestimation of the biomass artificially increases the short-term416

variance and leads to more cautious strategies: they make cautious decisions because417

early warnings are artificially created by the biomass overestimation.418

• Imperfect knowledge of type K2. We suppose that managers over/underestimate the419

carrying capacity K resulting in an incorrect representation (reduced representative-420

ness) of the system. Our analysis (see SI) shows that overestimation 1) may be catas-421

trophic for OAE manager (no SOS) due to the fact that dynamics cross tipping points422

whereas managers believe the system is in a "safe" zone; 2) may yield positive effects423

for the MSY manager who makes cautious decisions because of overestimation.424

• Imperfect knowledge of type K3: we suppose that managers underestimate the fre-425

quency of extreme events. Knowledge of type K3 hardly impacts OAE managers very426

little in our case because of the trade-off between under/overestimation of K3 and the427

dynamics of the exploited ecosystem.428

• Imperfect knowledge of type K4: we suppose that managers underestimate the ex-429

ploitation of the ecosystem. Knowledge of type K4 impacts the OAE and the flat tax430

managers. It decreases the SOS of OAE but increases the SOS of the FT manager.431

The FT manager overestimates the exploitation yielding stringent strategies in terms432

of tax.433

Table 2 sums up the best strategies according to imperfect knowledge of each type. Re-434

sults show that there is no panacea—in terms of management strategies—that is universally435

robust to imperfect knowledge.436
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Imperfect knowl-

edge

Underestimation

(-50%)

Perfect estima-

tion

Overestimation

(+50%)

K1 (time series) OAE/ALF/MSY OAE EW/ALF

K2 (ecosystem) ALF/OAE OAE ALF/MSY

K3 (uncertain-

ties)

OAE OAE OAE

K4 (effort) ALF OAE FT

Table 2. Robustness of the safe operating space according to imperfect knowledge: best management strate-

gies are reported according to each imperfect knowledge. K- and σ-parameters as well times series and effort

e are multiplied by a coefficient (yielding more or less over/underestimations) in the decision-making process.

But the dynamics are calculated with the real ones.

437

438

439

440

6 Discussion and policy implications441

Here we proposed to compare different management strategies and to analyze them442

according to how they perform vis à vis a given knowledge typology. The more aggressive443

deployment of knowledge (in our terminology, more sophisticated knowledge infrastructure444

and management strategies) correlates with a larger SOS, except when the knowledge is im-445

perfect. In this latter case, the use of imperfect knowledge can be catastrophic when agents446

act in a feedback loop with incorrect information. However, results also show that in some447

cases, imperfect knowledge may involve unexpected cautious strategies that enlarge the SOS.448

These results suggest some of the difficulties involved with integrating the right level knowl-449

edge in the decision-making process despite the general importance of learning processes450

and knowledge on the successful management of ecosystems [Berkes, 2009]. However, we451

can suggest some useful insights based on our analysis:452

• Using a diversity of adaptive strategies. As shown in Table 2, there is no panacea453

in terms of management strategies that faces imperfect knowledge. This suggests that454

managers have to estimate the cost-benefit ratio of a better characterization of knowl-455

edge: they have to evaluate if the expected gains provided by a strategy based on a full456

(and perfect) knowledge will counterbalance the costs of knowledge assessment, es-457

pecially compared to strategies whose resources are saved from the simplicity of the458
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control, with low possibility of being wrong. Learning how to navigate this portfolio459

of adaptive strategies is therefore of critical importance.460

• Identifying (un-)safe zones. One key issue of choosing a strategy with the right level461

of knowledge is identifying relatively safe and unsafe zones. Indeed, switching be-462

tween lower and higher cost controls may be a cost effective approach especially in463

safe zones. As it is unnecessary to over-monitor safe areas, decision-makers have to464

estimate when it is necessary to assess more knowledge in order to avoid falling in465

zones with a non-adapted level of required knowledge.466

• Using adaptive learning. Beyond improving models and data acquisition in order to467

develop a robust strategy, managers may also focus on learning about safe and unsafe468

zones and how to combine relatively simple (efficient in terms of the knowledge in-469

frastructure required) strategies that perform well in each into a "piecewise adapted"470

controller based on a knowledge typology such as the one we have explored here. A471

critical issue is the use of adaptive learning in order to assess the two-way relationship472

between people and their social-ecological environment [Davidson-Hunt and Berkes,473

2003].474

By using a diversity of adaptive-based strategies and adaptive learning, stakeholders may475

mobilize the right knowledge at the right time. It will therefore reduce the probability of476

collapse of the system by coping with emerging and inevitable hazards that drive socio-477

ecological systems.478

These results underline the necessity as well as the difficulty of assessing and integrat-479

ing knowledge within the management of socio-ecological systems. It is not straightforward480

in practice and remains a critical issue [Bohnet, 2010] that may involve a diversity of social481

and institutional processes such as multi-level learning [Pahl-Wostl, 2009b]. Mobilizing the482

right knowledge at the right time also requires the management of acquired knowledge. We483

argue that knowledge management used in organizational approaches [Alavi and Leidner,484

2001; Hansen et al., 1999] may improve regulation of exploited ecosystem. Our conceptual485

approach based on a knowledge typology and robustness may help highlight the importance486

of a given knowledge according to a given state of the system and to a given strategy.487

In a more general way, our results show the importance of knowledge infrastructure488

and knowledge commons. Although knowledge infrastructure is not a traditional infrastruc-489

ture [Frischmann, 2005], it remains of prime of importance for managing exploited ecosys-490
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tems [Anderies et al., 2016] and should be clearly highlighted in the system in order to pro-491

duce the knowledge required for adaptive management.492
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A: Supporting Information: How does knowledge infrastructure mobilization in-610

fluence the safe operating space of regulated exploited ecosystems?611

A.1 Managing a harvest population612

The biomass dynamics follow:613

dx
dt
= r(K − x)(x − α) − e(t)x(t) + w(t) (A.1)

Symbols are logistic growth parameters r = 0.25 and K = 4, sigmoid predation consumption614

coefficient α = 0.25. w(t) is a white noise process with a standard deviation equal to 0.075.615

The effort dynamics e(t) writes:616

de
dt
= βe(px − c − a(t))(1 − e) (A.2)

with β = 0.075,c = 1.5, p = 4.5. a(t) ∈ [0, amax] is the control with amax = 4.5.617

The term (1 − e) is used in order to have an upper limit of the effort equal to 1. We set the618

minimum effort emin to 0.05 and πmin to 0.2. In what follows, 1000 simulations were used619

for assessing the probability of sustainability of the system. The time horizon is equal to 100620

time step.621

A.2 Adaptive strategies622

A.2.1 Optimal Adaptive Effort Manager623

OAE manager adapts the control a(t) according to time series in order to maximize the624

probability of sustainability. This problem can be solved by dynamic programming. Let’s625

consider a time of interest T . We consider the probability of sustainability Ps(T, x) at time T .626

If biomass x is lower than a threshold πmin or the effort lower than emin, the system is consid-627

ered as failed. Then we use the following backwards technique (dynamic programing):628

∀t ∈ [1,T], Ps(t, x(t)) = max
a(t)

∑
P( f (x(t), a(t)))Ps(t + 1, f (x(t), a(t))) (A.3)

Finally we have access to the strategy a(0), a(1), ..., a(T) that maximizes the probability629

of sustainability Ps(0, x).630

A.2.2 Admittance Fee Licence Manager631

AFL manager always imposes a constant fee a(t) = amax, ∀t.632
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A.2.3 Flat Tax Manager633

FT manager always imposes a(t) as follows:634

a(t) = amax
e(t) − emin

eFT − emin
(A.4)

eFT constitutes a normative issue: the effort for which the fee a(t) reaches the maximum635

fee amax. Here, we arbitrary choose eFT = 0.7. Note that the choice of this value doesn’t636

qualitatively change the results.637

A.2.4 Early Warnings Manager638

"‘Early warnings"’ manager adapts regulation a(t) according to short-term variance of639

times series V(x(t − 10), ..., x(t)). Then according to a threshold γ, following rules are used:640

• if V(x(t − 10), ..., x(t))>γ, a(t) = amax;641

• if V(x(t − 10), ..., x(t))<γ, a(t) = 0642

In the simulations, we choose γ = 0.0025 in such a way that it characterizes the collapse643

of the system (variance increases when the system collapses). Note that other sophisticated644

indicators may be used based on knowledge K3.645

A.2.5 MSY Manager646

MSY manager adapts regulation a(t) according to biomass and the MSY:647

• if x(t)<xMSY , a(t) = amax;648

• if x(t)>xMSY , a(t) = 0649

Here, xMSY equals to 2.125.650

A.3 Control maps651

Figure A.1 represents the map of controls for the different managers. In the case of652

OAE manager, optimal strategy consists in: no regulation when the biomass and the effort653

are low and regulation elsewhere. These results echo comments of Figures 1c and 1d. Note654

that any controls leads to a probability of sustainability of 0 when the effort is too high, ex-655

plaining that optimization give unstable results on the right hand (with 1000 simulations).656
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a - ALF manager b - MSY manager,

c - FT manager d - EW manager,

d - OAE manager

Figure A.1. Control maps for the different managers. Note that for the EW manager, it corresponds to the

mean value of the control according to the state of the system and for t=50 (control maps are qualtitatively the

same over time)

657

658

659
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A.4 Sensitivity of SOS to imperfect knowledge660

A.5 Introduction661

Knowledges are under or overestimated by decreasing or increasing (50%) the follow-662

ing data:663

• time series x(t) for knowledge k1;664

• the carrying capacity K for knowledge K2;665

• the standard deviation σ for knowledge K3;666

• the effort e for knowledge K4.667

A.5.1 Imperfect knowledge K1668

OAE, MSY and EW managers use knowledge K1 in their decision-making process.669

Hereafter, the SOS of these managers according to knowledge K1 (Figure 5).670

A.5.2 Imperfect knowledge K2674

OAE and MSY managers use knowledge K2 in their decision-making process. Here-678

after, the SOS of these managers according to knowledge K2 (Figure 6).679

A.5.3 Imperfect knowledge K3680

Only OAE manager uses knowledge K3 in their decision-making process. Hereafter,684

the SOS of this manager according to knowledge K3 (Figure 7).685

A.5.4 Imperfect knowledge K4686

Only OAE and FT managers use knowledge K4 in their decision-making process. Here-690

after, the SOS of these managers according to knowledge K3 (Figure 8).691
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a - Underestimation, EW manager b - Overestimation, EW manager,

c - Underestimation, MSY manager d - Overestimation, MSY manager,

d - Underestimation, OAE manager e - Overestimation, OAE manager,

Figure A.2. Robustness of the safe operating space according to imperfect knowledge K1. Times series are

multiplied by a coefficient (yielding more or less over/underestimations) in the decision-making process. But

the dynamics are calculated with the real ones.

671

672

673
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a - Underestimation, MSY manager b - Overestimation, MSY manager,

c - Underestimation, OAE manager d - Overestimation, OAE manager,

Figure A.3. Robustness of the safe operating space according to imperfect knowledge K2. K-parameter is

multiplied by a coefficient (yielding more or less over/underestimations) in the decision-making process. But

the dynamics are calculated with the real ones.

675

676

677

a - Underestimation, OAE manager b - Overestimation, OAE manager,

Figure A.4. Robustness of the safe operating space according to imperfect knowledge K3. σ-parameter is

multiplied by a coefficient (yielding more or less over/underestimations) in the decision-making process. But

the dynamics are calculated with the real ones.

681

682

683
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a - Underestimation, FT manager b - Overestimation, FT manager,

c - Underestimation, OAE manager d - Overestimation, OAE manager,

Figure A.5. Robustness of the safe operating space according to imperfect knowledge K4. Effort e is mul-

tiplied by a coefficient (yielding more or less over/underestimations) in the decision-making process. But the

dynamics are calculated with the real ones.

687

688

689
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